

Disclosures

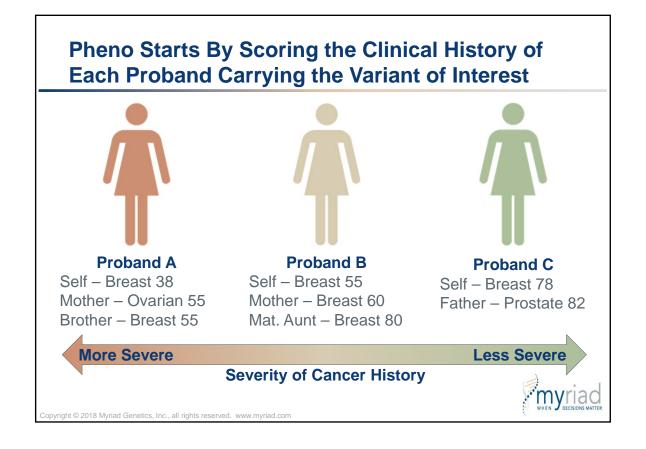
I am employed by Myriad Genetic Laboratories, Inc. and receive salary and stock as compensation.

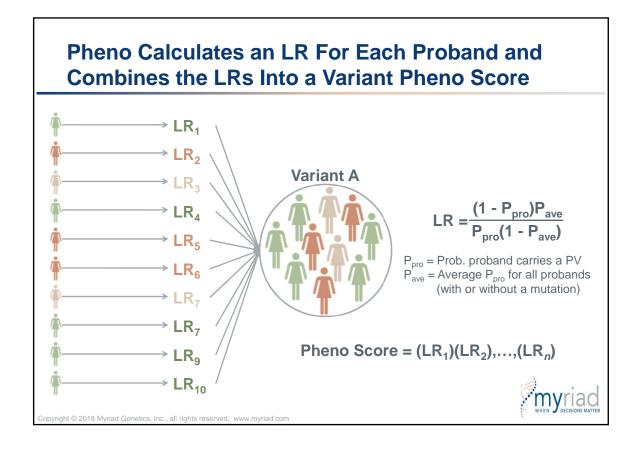
Methods

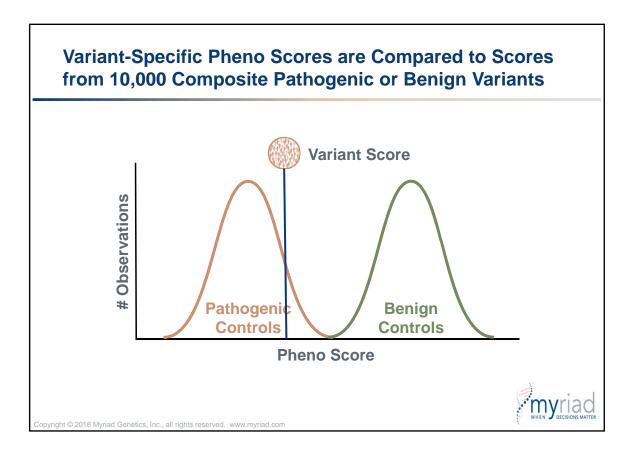
Clinical Testing: Informed Consent

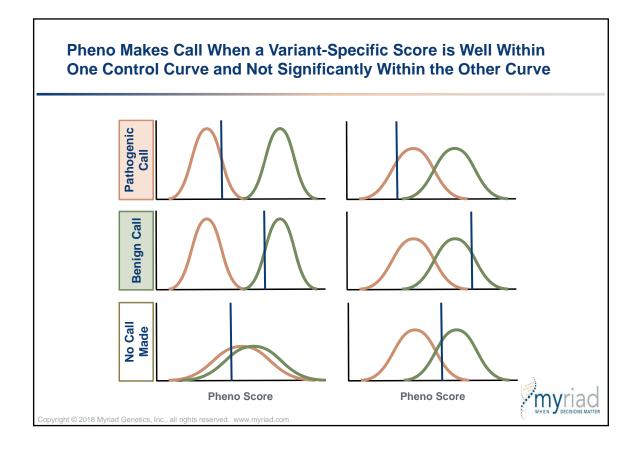
- Single syndrome
- Pan-cancer panel testing of up to 28 genes: BRCA1, BRCA2, MLH1, MSH2, MSH6, PMS2, EPCAM, ATM, CHEK2, PALB2, MUTYH, APC, PTEN, TP53, STK11, SMAD4, CDH1, BARD1, BRIP1, CDKN2A, CDK4, BMPR1A, RAD51C, RAD51D, POLD1, POLE, GREM1

Clinical History: Test Requisition


- Patient: Gender, ancestry, cancer(s) and age(s) of diagnosis, and current age
- Family members:
 Affected relatives
 with cancer type(s)
 and age(s) of
 diagnosis


Cancers Assessed by Pheno


- Assessed cancers are gene-specific
- BRCA1/BRCA2:


Female Breast, Breast + Ovarian, Breast *in situ*, DCIS, Ovarian, Multiple Breast, Male Breast, Female Pancreatic, Male Pancreatic, Prostate, Lobular

Pheno is Optimized for Each Gene Individually:

PPV and NPV Greater than 99.5%

	Gene	Classification	# Variants Tests	NPV (%)	PPV (%)
	BRCA1	Pathogenic	27,000	99.90	99.72
		Benign	52,000	99.90	99.12
	BRCA2	Pathogenic	27,000	99.90	99.71
isk	BRCAZ	Benign	52,000	99.90	33.71
2	MLH1	Pathogenic	27,000	99.92	99.79
High		Benign	52,000	33.32	33.13
I	MSH2	Pathogenic	27,000	99.93	99.72
		Benign	52,000	99.93	99.12
		Pathogenic	27,000	99.90	99.86
		Benign	52,000	33.30	33.00

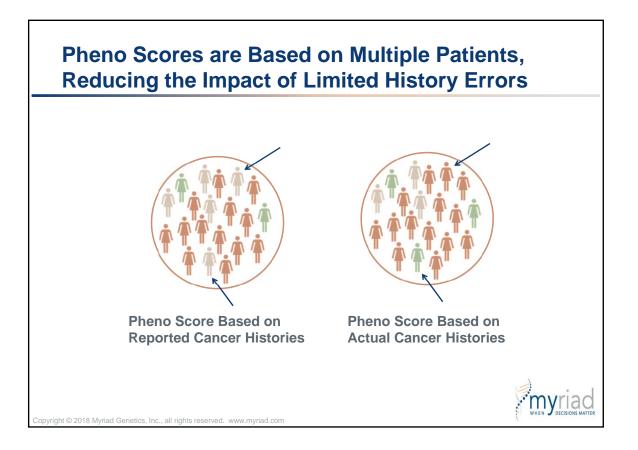
Pheno is Optimized and Re-Validated At Least Every Two Years to Verify that PPV and NPV Remain Greater than 99.5%

	Gene	Classification	# Variants Tests	NPV (%)	PPV (%)	
	ATM	Pathogenic	26,000	99.94	99.81	
~	ATW	Benign	51,000	33.34	33.01	
Moderate Risk	CHEK2	Pathogenic	26,000	99.87	99.87	
		Benign	51,000	99.07		
	PALB2	Pathogenic	26,000	99.97	N/A*	
	FALDZ	Benign	6,000	33.31		
	BARD1	Pathogenic	26,000	99.85	N/A*	
	BAKUT	Benign	6,000	33.03	IN/A	

^{*} Pheno is not currently used for BARD1 or PALB2 upgrades to pathogenic or likely pathogenic

Copyright © 2018 Myriad Genetics, Inc., all rights reserved. www.myriad.com

Will Pheno Work if Personal and Family History Data Contains Errors?


Fact: Patient cancer histories are obtained from the test requisition form, and patients may not report family histories correctly.

Concern: If the data used to generate a Pheno score isn't perfect, how can we trust the Pheno classification?

Response: Pheno has multiple design features which minimize the effect of clinical history errors on accuracy.

Pheno Makes the Correct Classification When Family History is Under-reported

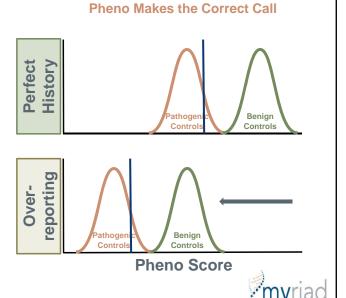
Fact: TRF data is used for variant-carrying probands and probands used as pathogenic and benign controls

Result: If multiple patients under-report their family history, Pheno will make the correct classification call. All variant-specific and control scores shift together towards benign, but remain relatively similar

copyright © 2018 Myriad Genetics, Inc., all rights reserved. www.myriad.com

Pheno Makes the Correct Classification When Family History is Under-reported

Family members (if present) were randomly deleted from a percentage of probands carrying the same variant and from control probands: 50,000 benign and 25,000 pathogenic variants were tested through 2-fold cross-validations


		% Probands: Two 2nd			% Probands: One 1st		
		Degree Relatives			and Two 2nd Degree		
		Deleted			Relatives Deleted		
Gene	Metric	10%	50%	100%	10%	50%	100%
DDCA1	PPV (%)	99.74	99.80	99.80	99.59	99.72	99.70
BRCA1	NPV (%)	99.90	99.89	99.90	99.90	99.88	99.90
BBCA2	PPV (%)	99.65	99.81	99.78	99.84	99.88	99.85
BRCA2	NPV (%)	99.90	99.89	99.90	99.88	99.90	99.90

myriad WHEN DECISIONS MATTER

Pheno Makes the Correct Classification When Family History is Over-reported

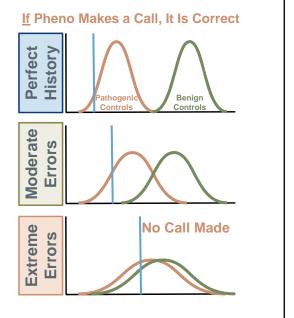
Fact: TRF data is used for variant-carrying probands and probands used as pathogenic and benign controls

Result: If multiple patients over-report their family history, Pheno will make the correct classification call. All variant-specific and control scores shift together towards pathogenic, but remain relatively similar.

Copyright © 2018 Myriad Genetics, Inc., all rights reserved. www.myriad.com

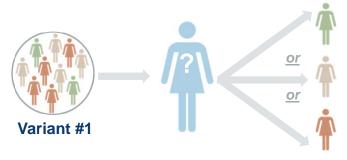
Pheno Makes the Correct Classification When Family History is Over-reported

Affected sisters and/or aunts were randomly added to a percentage of probands carrying the same variant and to control probands: 50,000 benign and 25,000 pathogenic variants were tested through 2-fold cross-validations


				% Probands: One			
		% Probands: Two			Affected Sister and Two		
		Affected Aunts Added			Affected Aunts Added		
Gene	Metric	10%	50%	100%	10%	50%	100%
BRCA1	PPV (%)	99.68	99.60	99.74	99.67	99.82	99.83
DKCAI	NPV (%)	99.88	99.88	99.88	99.89	99.86	99.89
BRCA2	PPV (%)	99.54	99.59	99.80	99.63	99.75	99.76
	NPV (%)	99.90	99.89	99.89	99.91	99.87	99.90

myriad WHEN DECISIONS MATTER

Pheno Makes the Correct Classification When Mixed History Errors are Present


Fact: TRF data is used for variantcarrying probands <u>and</u> probands used as pathogenic and benign controls

Result: If some patients overreport and others under-report family history, variant-specific Pheno scores look more like "an average" of pathogenic and benign. Pathogenic and benign control curves "slide together." Pheno calls are more difficult to make, but are still accurate.

Copyright © 2018 Myriad Genetics, Inc., all rights reserved. www.myriad.com

We Tested the Effects of Mixed Family History Reporting Errors on Pheno Accuracy

- 1. Randomly select a proband, and replace that proband and all relatives with a random proband
- 2. Replace 1st and 2nd degree relatives without replacing the proband
- 3. Replace 2nd degree relatives without replacing the proband and 1st degree relatives

Copyright © 2018 Myriad Genetics, Inc., all rights reserved. www.myriad.com

myriac

Pheno Makes the Correct Classification When Mixed History Errors are Reported

Relative histories were replaced for a percentage of random probands carrying the same variant and for control probands: 50,000 benign and 25,000 pathogenic variants were tested through 2-fold cross-validations

		% Probands:			% Probands: All 1st		
		All 2 nd Degree Relatives			and 2 nd Degree		
		F	Replaced	l	Relati	ves Rep	laced
Gene	Metric	10%	20%	50%	10%	20%	50%
	PPV (%)	99.74	99.64	99.75	99.70	99.79	99.68
BRCA1	NPV (%)	99.89	99.89	99.88	99.90	99.89	99.91
	PPV (%)	99.55	99.74	99.92	99.76	99.73	99.74
BRCA2	NPV (%)	99.89	99.90	99.89	99.90	99.89	99.89

Copyright © 2018 Myriad Genetics, Inc., all rights reserved. www.myriad.com

Pheno Makes the Correct Classification When Mixed History Errors are Reported

Proband and relative histories were replaced for a percentage of random probands carrying the same variant and for control probands: 50,000 benign and 25,000 pathogenic variants were tested through 2-fold cross-validations

% Probands:

		Proband,	1st and 2n	d Degree
		Relative I	Histories F	Replaced
Gene	Metric	10%	20%	50%
	PPV (%)	99.68	99.75	99.76
BRCA1	NPV (%)	99.86	99.87	99.73
	PPV (%)	99.81	99.70	Fail
BRCA2	NPV (%)	99.90	99.89	Fail

Pheno Analysis is A Highly Accurate Algorithm

Rigorously Developed and Validated

- Rigorously Developed Optimized for each gene
 - >99.5% PPV and NPV

Accurate in the Presence of Personal and/or Family History Errors

- Case-control design
- Will not make a call if data contains too many errors
- When Pheno makes a call, it is accurate

Critical for Variant Reclassification and Appropriate Patient Care

- 2016: 23,337 amended reports; ~55% from Pheno
- Patients and family members may receive appropriate medical management

Copyright © 2018 Myriad Genetics, Inc., all rights reserved. www.myriad.com

Thank You!

BRCA1, BRCA2	 Pruss D, et al. Development and validation of a new algorithm for the reclassification of genetic variants identified in the BRCA1 and BRCA2 genes. Breast Cancer Res Treat. 2014 147(1):119-132.
MLH1, MSH2, MSH6	 Morris B, et al. Classification of genetics variants in genes associated with Lynch syndrome using a clinical history weighting algorithm. BMC Genet. 2016 17(1):99.
BRCA1, BRCA2	 Bowles KR, et al. A clinical history weighting algorithm accurately classifies BRCA1 and BRCA2 variants. Presented ASHG, 2013.
MLH1, MSH2, MSH6	 Bowles KR, et al. Development of a novel history weighting algorithm for the reclassification of genetic variants identified in genes associated with Lynch syndrome. Presented ACMG, 2015.
BRCA1, BRCA2, MLH1, MSH2, MSH6, ATM, CHEK2, PALB2	 Bowles KR, et al. Reclassification of uncertain variants identified in high and moderate cancer risk genes using history weighting analysis. Presented ACMG, 2016.
BRCA1, BRCA2, ATM, CHEK2, PALB2	 Bowles KR, et al. Enhancement of history weighting analysis to accurately classify variants in high and moderate risk cancer panel genes. International Symposium on HBOC, 2016.
BARD1	Added summer 2017 – Data on file

